R Dataset / Package mediation / jobs

How To Create a Barplot

Webform

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Help

Description

Describes how to create a bar plot based on count data. For an example of count data, see the email50 curated data set which was taken from the Open Intro AHSS textbook (not affiliated). An example of count data in this dataset would be the spam column.

Usage

Select one (1) column to create its barplot and then click 'Submit'. If you do not choose count data, you may get unexpected results.

See Also

Students may also be interested in creating barplots for contingency tables.

For a stacked side-by-side barplot, see the other barplot app.

How To Create a Stacked Barplot

Webform

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Help

Usage

Select 1 (one) column from a contingency table like the Gender and Politics or VADeaths curated datasets.

If you do not choose a contingency table, you may get unexpected results. You can import a dataset if you are logged-in.

Details

Shows the student how to create a single stacked bar plot based on a column in a contingency table.

See Also

For a basic barplot (single column) based on count data see the count data barplot app.

For a stacked side-by-side barplot see the other stacked barplot app for categorical data.

How To Create a Pie Chart

Webform

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Help

Usage

Select 1 (one) column from a contingency table. If you don't have your own dataset, you can choose the Gender and Politics or VADeaths curated datasets. If a contingency table is not chosen, you may get unexpected results.

A contingency table has columns like a regular dataset, but the first row contains row names that categorize and "split-up" the dataset. An example of a contingency table would be something like this:

LIBERAL CONSERVATIVE
F 762 468
M 484 477

This contingency table is take from the Gender and Politics dataset. You can get a preview by selecting the dataset from the Curated Data dropdown above.

Details

This app shows the student how to create a pie chart from a contingency table by hand using a Quadstat dataset.

A pie chart shows proportions of a sample or population. Each piece of a pie chart corresponds to some subset of the sample or population. In this case, we will use the contingency table rows to subset the sample.

See Also

Students may also want to view the app for creating a pie chart from count data.

How To Compute the Mean

Webform

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Help

Usage

Click "Submit" after selecting one column to see how to compute the arithmetic mean (average) of data (vectors).

Description

If all the values of a sample were plotted on a number line, the average would be the point in the middle that would balance the two sides.

The average is greatly influenced by outliers, meaning extreme points can pull the average to the left or right.

If we are referring to the average of population (all observations), the symbol for the average (arithmetic mean) is $\mu$.

If we are referring to the average of a sample (a subset of the population), the symbol for the average (arithmetic mean) is $\bar{x}$.

Computing the average

Suppose we have a sample consisting of $x_1, x_2, x_3,...,x_n$. This means we have $n$ observations. Then,

$$\bar{x}=\frac{x_1, x_2, x_3,...,x_n}{n}.$$

The formula tells us that we need to add all the observations and then divide by the number of observations to compute the mean.

Example 1

Compute the mean of $A = \{1,2,3\}$.

$$\bar{x} = \frac{1+2+3}{3} = 2.$$

How To Create a Plot

Webform

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Help

Usage

Select two columns which are to be used in the scatterplot. The first column clicked will be the independent variable (X-axis).

Description

This web application describes how to create a scatterplot of two dataset variables plotted on the xy-axes.

How to Compute the Median

Webform

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Help

Median Value

Description

Compute the sample median.

Usage

median(x, na.rm = FALSE, ...)

Arguments

x

an object for which a method has been defined, or a numeric vector containing the values whose median is to be computed.

na.rm

a logical value indicating whether NA values should be stripped before the computation proceeds.

...

potentially further arguments for methods; not used in the default method.

Value

The default method returns a length-one object of the same type as x, except when x is logical or integer of even length, when the result will be double.

If there are no values or if na.rm = FALSE and there are NA values the result is NA of the same type as x (or more generally the result of x[FALSE][NA]).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Boxplot

Submitted by pmagunia on April 22, 2018 - 3:07 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Correlation Coefficient

Submitted by pmagunia on April 22, 2018 - 3:08 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Cumulative Frequency Histogram

Submitted by pmagunia on April 22, 2018 - 3:09 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Dotplot

Submitted by pmagunia on April 22, 2018 - 3:10 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Hollow Histogram

Submitted by pmagunia on April 22, 2018 - 3:10 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Mean

Submitted by pmagunia on April 22, 2018 - 3:11 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Pie Chart

Submitted by pmagunia on April 22, 2018 - 3:11 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Plot

Submitted by pmagunia on April 22, 2018 - 3:07 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Regression

Submitted by pmagunia on April 22, 2018 - 3:12 PM

Please see the full application for additional options and documentation.

Stem and Leaf Plots

Submitted by pmagunia on April 22, 2018 - 3:12 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Summary

Submitted by pmagunia on April 22, 2018 - 2:51 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.

Visual Summaries

Submitted by pmagunia on April 22, 2018 - 3:13 PM

Please see the full application for additional options and documentation.

The Drupal File ID of the selected dataset. The user may load another using the search bar on the operation's page.
Submitted by pmagunia on March 9, 2018 - 1:06 PM
Attachment Size
dataset-15363.csv 133.59 KB
Dataset License
GNU General Public License v2.0
Documentation

JOBS II data

Description

Job Search Intervention Study (JOBS II). JOBS II is a randomized field experiment that investigates the efficacy of a job training intervention on unemployed workers. The program is designed to not only increase reemployment among the unemployed but also enhance the mental health of the job seekers. In the JOBS II field experiment, 1,801 unemployed workers received a pre-screening questionnaire and were then randomly assigned to treatment and control groups. Those in the treatment group participated in job-skills workshops. In the workshops, respondents learned job-search skills and coping strategies for dealing with setbacks in the job-search process. Those in the control condition received a booklet describing job-search tips. In follow-up interviews, the two key outcome variables were measured; a continuous measure of depressive symptoms based on the Hopkins Symptom Checklist, and a binary variable, representing whether the respondent had become employed.

Usage

data

Format

A data matrix with 899 rows and 17 columns, containing no missing values. The data are provided only for illustrative purposes and not for inference about program efficacy, for which the original data source should be consulted.

econ_hard:

Level of economic hardship pre-treatment with values from 1 to 5.

depress1:

Measure of depressive symptoms pre-treatment.

sex:

Indicator variable for sex. 1 = female

age:

Age in years.

occp:

Factor with seven categories for various occupations.

marital:

Factor with five categories for marital status.

nonwhite:

Indicator variable for race. 1 = nonwhite.

educ:

Factor with five categories for educational attainment.

income:

Factor with five categories for level of income.

job_seek:

A continuous scale measuring the level of job-search self-efficacy with values from 1 to 5. The mediator variable.

depress2:

Measure of depressive symptoms post-treatment.

work1:

Indicator variable for employment. 1 = employed.

job_dich:

The job_seek measure recoded into two categories of high and low. 1 = high job search self-efficacy.

job_disc:

The job_seek measure recoded into four categories from lowest to highest.

treat:

Indicator variable for whether participant was randomly selected for the JOBS II training program. 1 = assignment to participation.

comply:

Indicator variable for whether participant actually participated in the JOBS II program. 1 = participation.

control:

Indicator variable for whether participant was randomly selected to not participate in the JOBS II training program. 1 = non-participation.

Source

The complete JOBS II data is available from the data archives at www.icpsr.umich.edu/

References

Vinokur, A. and Schul, Y. (1997). Mastery and inoculation against setbacks as active ingredients in the jobs intervention for the unemployed. Journal of Consulting and Clinical Psychology 65, 5.

--

Dataset imported from https://www.r-project.org.

Documentation License
GNU General Public License v2.0

From Around the Site...

Title Authored on Content type
R Dataset / Package Ecdat / Schooling March 9, 2018 - 1:06 PM Dataset
R Dataset / Package datasets / npk March 9, 2018 - 1:06 PM Dataset
R Dataset / Package wooldridge / wageprc March 9, 2018 - 1:06 PM Dataset
R Dataset / Package wooldridge / card March 9, 2018 - 1:06 PM Dataset
R Dataset / Package MASS / synth.tr March 9, 2018 - 1:06 PM Dataset