Quadstat Output - Average

Submitted by pmagunia on September 2, 2017 - 9:20 PM

Computing the Average

To compute the average, $\bar{x}$, we must sum all the observations in the column incidents_85_99 and then divide by the number of observations.
First, let us list the observations in . The observation(s) include:
2, 76, 6, 3, 2, 14, 2, 3, 5, 7.
We have a total of 56 observation(s). So, $n =56.$
Now, $\bar{x} = \frac{\sum\limits_{i=1}^n x_i}{n}.$
$\sum\limits_{i=1}^n x_i = \sum\limits_{x=1}^56x_i = 2 + 76 + \cdots + 9 = 402.$
Therefore, $\bar{x} = \frac{\sum\limits_{i=1}^n x_i}{n} = \frac{2+76+ \cdots + 9}{56}=7.18.$
So, $\bar{x} =7.18$.

From Around the Site...

Title Authored on Content type
R Dataset / Package HSAUR / schizophrenia2 March 9, 2018 - 1:06 PM Dataset
R Dataset / Package survival / rats March 9, 2018 - 1:06 PM Dataset
R Dataset / Package DAAG / carprice March 9, 2018 - 1:06 PM Dataset
R Dataset / Package wooldridge / bwght2 March 9, 2018 - 1:06 PM Dataset
R Dataset / Package boot / cav March 9, 2018 - 1:06 PM Dataset