Quadstat Output - Pie chart For Contingency Table

Submitted by Anonymous (not verified) on May 12, 2019 - 6:21 PM

Creating a Pie Chart

The first step in creating a pie chart is to isolate the column we will be working from, in this case, column X.deaths.. Values in this column include 785 863 883 793 971 970 751 743 1000 834 We will want to sum this column so that we can compute each proportion. The proportion will tell us what size we need to make each pie slice.

785 + 863 + 883 + 793 + 971 + 970 + 751 + 743 + 1000 + 834 + 775 + 680 + 773 + 916 + 806 + 724 + 743 + 693 + 941 + 926 + 861 = 17431.

We will want to compute the proportion for each row. To do that we, divide each row value by the sum like this

Proportion 1 = $\frac{785}{17431} = 0.045 \approx 5$

Proportion 2 = $\frac{863}{17431} = 0.05 \approx 5$

Proportion 3 = $\frac{883}{17431} = 0.051 \approx 5$

Proportion 4 = $\frac{793}{17431} = 0.045 \approx 5$

Proportion 5 = $\frac{971}{17431} = 0.056 \approx 6$

Proportion 6 = $\frac{970}{17431} = 0.056 \approx 6$

Proportion 7 = $\frac{751}{17431} = 0.043 \approx 4$

Proportion 8 = $\frac{743}{17431} = 0.043 \approx 4$

Proportion 9 = $\frac{1000}{17431} = 0.057 \approx 6$

Proportion 10 = $\frac{834}{17431} = 0.048 \approx 5$

Proportion 11 = $\frac{775}{17431} = 0.044 \approx 4$

Proportion 12 = $\frac{680}{17431} = 0.039 \approx 4$

Proportion 13 = $\frac{773}{17431} = 0.044 \approx 4$

Proportion 14 = $\frac{916}{17431} = 0.053 \approx 5$

Proportion 15 = $\frac{806}{17431} = 0.046 \approx 5$

Proportion 16 = $\frac{724}{17431} = 0.042 \approx 4$

Proportion 17 = $\frac{743}{17431} = 0.043 \approx 4$

Proportion 18 = $\frac{693}{17431} = 0.04 \approx 4$

Proportion 19 = $\frac{941}{17431} = 0.054 \approx 5$

Proportion 20 = $\frac{926}{17431} = 0.053 \approx 5$

Proportion 21 = $\frac{861}{17431} = 0.049 \approx 5$

Image
Quadstat Statistical Image using the Pie chart For Contingency Table web application found on Quadstat.net
Analysis License
Public Domain

From Around the Site...

Title Authored on Content type
R Dataset / Package robustbase / NOxEmissions March 9, 2018 - 1:06 PM Dataset
R Dataset / Package Zelig / kmenta March 9, 2018 - 1:06 PM Dataset
R Dataset / Package HSAUR / polyps March 9, 2018 - 1:06 PM Dataset
R Dataset / Package lattice / barley March 9, 2018 - 1:06 PM Dataset
R Dataset / Package Ecdat / nkill.byCountryYr March 9, 2018 - 1:06 PM Dataset